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Research Objectives

As stated in the research proposal, the objective of this program was to perform basic
research on the application of estimation-theoretic processing methods for unconventional
imaging systems. Imaging applications involving both incoherent (passive) and coherent
(active) illumination were to be investigated, and the four significant thrusts of the program
were to be:

1. the development of optimal processing methods for identifying and correcting wave-
front errors that arise due to a non-homogeneous propagation medium or sensor-
platform instabilities;

2. the utilization of statistical priors and penalties in the image-estimation and system-
identification procedures;

3. the utilization of novel and/or auxiliary measurements such as those supplied by a
wave-front sensor or pupil mask; and

4. the development of improved methods for image formation from sparse pupil-plane
arrays, and an investigation into the optimal number and placement of array elements
for coherent active-illumination systems.

Because funding for this project was reduced from three to two years, most of the efforts
were restricted to the first three objectives. Collaborative efforts were conducted with Air
Force personnel at the Air Force Research Laboratory in Albuquerque, NM and the Air
Force Maui Optical Station in Maui, HI.
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Research Methods and Results

This section documents the research methods used and results obtained for an investigation
of estimation-theoretic methods for unconventional imaging. The methods and results are
summarized for two areas:

1. Estimation-theoretic bounds on the estimation accuracy for multi-channel phase re-
trieval; and

2. Dual-channel signal recovery from auto- and cross-correlation data.

Lower Bounds on Estimation Accuracy for Multi-Channel Phase

Retrieval

Wavefield aberrations induced by optical defects in monolithic lenses or mirrors, alignment er-
rors in segmented-aperture systems, or wave propagation through an inhomogeneous medium
can severely limit the resolution of an optical imaging-system and result in significantly dis-
torted imagery. Adaptive compensation or post-detection processing can be used to correct
for the aberrations and produce undistorted imagery, but these procedures require accurate
estimation of the wavefield aberrations — a phase-retrieval problem must be solved.

Hartmann sensors are commonly used to estimate wavefront or optical aberrations in an
imaging system. These sensors operate on the principle that the wavefront aberrations are
well-approximated by linear tilts over small spatial regions — a Hartmann sensor segments
the wavefield into small spatial segments with a lenslet array, and, in principle, the spots
formed by the array translate according to the local wavefront slope [1]. The local slope
estimates are then processed to estimate the wavefront (or aberrations). The point-spread
function from a conventional image can also be used to estimate the wavefront or aberrations,
but this is done less frequently. This method was used out of necessity, however, to analyze
the aberrations of the Hubble Space Telescope’s infamous primary mirror [2]. Another
method that can be applied to the wavefront or optical-aberration estimation problem is
phase diversity, whereby part of the light from a conventional image is split into a diversity
channel where an additional aberration is introduced. This aberration is frequently induced
by collecting the diversity data out of the focal plane {3].

Performance comparisons for the wavefront- and aberration-estimation systems men-
tioned above are typically linked to specific processing schemes. In contrast with this
approach, our goal in this project is to provide the fundamental limits on wavefront- or
aberration-estimation accuracy that are imposed by the use of various sensing modalities.
To accomplish this, the Fisher information and Cramer-Rao bound are used to quantify the
information content of various modalities, and simulation results are presented to compare
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optimal estimation performance to the bounds. A surprising result of the analysis shows that
data recorded by a conventional imaging system contains more information for parameter
identification than do those recorded with a Hartmann sensor.

Mathematical Models

For quasi-monochromatic wave propagation through a relatively homogeneous medium. the
diffraction-limited incoherent point-spread function for a conventional imaging system or
Hartmann wavefront sensor is well-modeled as:

h) = | Tw)stywian] )

where y and u are two-dimensional position variables in the sensor and pupil planes, respec-
tively, T'(-) is the pupil transmittance function, P is the pupil region, and s(-, -) is the system
transfer function for propagation from the pupil plane to the sensor plane. For the case of
an in-focus imaging system in the Fresnel approximation, the pupil transmittance function
is modeled as

T(0) = () oxp (=i 1uF ). )

and the system propagation function is modeled as

exp (j%{idi) exp (.7r ly — u|2> ,

where ) is the nominal wavelength of the detected radiation, f is the system focal length,
A(+) is the system aperture or pupil function, and d; is the distance from the pupil plane to
sensor plane. For a P-element Hartmann type lenslet array, the pupil transnrittance function
can be modeled as P .
T
T(0) = 32 Adu = wesp (=il ). “
p=1

where u, denotes the location of the pth lenslet in the array, A;(-) is the lenslet aperture
function, and f; is the lenslet focal length. In this situation the Fresnel approximation for
propagation from the lenslet plane to the sensor plane may not be adequate, and the more
general Huygens-Fresnel propagation function:

oy = LERUEY P ) 5
PO u—wprd

should be used, where d; is the distance from the lenslet plane to the sensor plane.




For situations involving optical aberrations in monolithic lenses or mirrors, alignment
errors in segmented systems, or wave propagation through an inhomogeneous medium. the
system point-spread function is often modeled with a single phase-screen aberration:

) =|[ T@eplse s ©

where 8(-) denotes the phase-error (in radians) caused by the system aberration, and T°(-)
is the abberation-free pupil transmittance function. The strength of an aberration is often
quantified through the average of its square over the pupil region P:

/ ; du "

but care must be used when applying this measure because constant offsets (piston) and
linear terms (tilt) will increase €2, but will not affect the quality of a system’s imagery.

For systems that divide the incoming light into multiple channels — such as phase diversity
or the simultaneous collection of a conventional image and a Hartmann wavefront-sensor
" image - the aberrated point-spread functions for each channel can be modeled as:

hi(y; 6) = o /PTk(U) exp [560(u)] sk(y,U)duz, k=12,.. K, (8)

where the channel point-spread functions are indexed by k and each channel is characterized
by its pupil transmittance function Tx(-) and propagation kernel si(-,-). The scale factor
oy accounts for both the exposure time and the percentage of received light that is diverted
to the kth channel. For situations of interest here, the transmittance functions for each
channel Ty () can be normalized so that h(y; ) integrates to ax. Then a is a parameter
that determines the expected number of photocounts (light level) in the kth channel.

In many applications and analyses it is common to expand the wavefront error in terms
of an appropriate set of basis functions:

= Z and)n(u)) - (9)

with the basis set {¢,(-)} selected in a manner that allows for accurate modeling of the
aberration function [1]. When the basis set is orthogonal over the system pupil with

A%wwmww:{lnzm

/Pdu 0n#Em ’

(10)




then

62 =
du
P
) > % entm JRACLNO
du
P

= 2, (11)

and the average square aberration strength is equal to the sum of the squares of the coeffi-
cients {an}.

The Zernike polynomials are probably the most commonly-used basis functions, but other
choices are possible. When an appropriate statistical model is available for the wavefront
errors, for instance, the Karhunen-Loeve basis functions can be used. Whereas the Karhunen-
Loeve expansion has the advantage of being optimal in the sense of compressing aberration
energy into low-order terms, the Zernike functions have a convenient mapping to familiar
aberration modes such as defocus, tilt, coma, etc. For thin-screen atmospheric turbulence
models, however, the compression properties of the Zernike polynomials are very close to
those of the optimal Karhunen-Loeve functions [1]. Regardless of which basis expansion is

used, the point-spread function for the kth channel can be modeled as:

/PTk(u) exp [70(u; a)] sk (y, u)du 2, (12)

hi(y; @) = oy

where the notation hx(y; @) now shows the explicit dependence of the point-spread function
on the expansion coefficients.

In the remainder of this section we consider lower bounds on the accuracy with which
the aberration parameters a can be estimated from noisy measurements of the point-spread

functions {hi(y; @)}. As a result of this study, insight is gained into the following important
question:

Which modality — conventional image or Hartmann wavefront sensor tmage -

allows for better accuracy when estimating the aberration parameters?

This question is answered through a detailed analysis of the Cramer-Rao lower bound on
estimation accuracy.




Noise Models and the Cramer-Rao Lower Bound

We consider a general scenario in which light from a known point-source is gathered by an
imaging instrument and split into K channels. The channels might consist of a conventional
imaging channel, a Hartmann wavefront sensor channel, a phase diversity channel, or any
combination of these. The detection of optical radiation in each channel is fundamentally
a random or stochastic process, and the semi-classical theory of photo-detection provides
one means for modeling this randomness [4]. According to the theory, the best possible
detector of optical radiation will record photo-events that can be modeled as samples from
a conditional Poisson process with a rate function that is proportional to the image-plane
intensity. Accordingly, the photo-event locations can be described by the two-dimensional
Poisson counting process {Ni(y), v = (y1,v2) € R?}, where Ni(y) denotes the number
of photo-events that occur over the spatial region {y’' : ¥’ < y} in the kth frame. The
expectation of Ni(y) conditional on hi(y; @) is then:

EMN@lhevia)) = [ huy'sa)dy/ (13)
Detectors of finite size will integrate these counts over spatial regions to form the data:

delp) = [ wip()dNk(y), (14)

where wy,(y) is a normalized (to unit integral) weighting function that models the spatial
region-of-integration for the pth detector element in the kth channel, and dNi(y) can be
loosely interpreted as the number of photo-events occurring in the square region defined by
y and y + dy. This Riemann-Stiltjes integral is interpreted as

0, N,=0
/wkp(y)de(y)= gkjwk (). N 50 (15)
=1
where
Ni= [ dNe() (16)

is the total number of photo-events occuring in the kth channel, and {yy} are the spatial
locations for photo-events in the kth channel. The conditional expectation of these data is

E {di[p]|he(y; )} = /wkp(y)hk(y;a)dy, (17)

and, because the detector regions are non-overlapping, the data from different detector el-
ements are statistically independent. Because our goal is to quantify the fundamental ad-




vantages of various sensor modalities for the estimation of wavefront aberration parameters,
we consider only the effects of photon noise in our subsequent analysis. If desired. other
noise effects such as read noise for charge-coupled device (CCD) cameras can be included to
characterize performance limits for specific cameras.

The collected data for all detector elements of all channels are denoted by D = {dx}f;.
and, consistent with the semiclassical theory for the detection of radiation, the conditional
probability mass function for these data is modeled as:

P(D;a) = P(d;a)

= I1 L exp(~hulp;al) (hilp; a))*™ /dy[n]!, (18)
where
hi[p; a] = / wp(Y) 1 (y; @) dy. (19)

Cramer-Rao Lower Bound for the Estimation of Deterministic Parameters

The Cramer-Rao bound is an information-theoretic limit on the estimation accuracy one can
expect when estimating parameters from random measurements [5]. Fundamental to this
bound is the Fisher information which quantifies the parameter-specific information con-
tained in the measurements. An important property of the Fisher information is additivity
for independent measurements. That is, the Fisher information for the collection of data D
is equal to the sum of the Fisher information for the data from each channel:

K
= Z Jk(a‘}’ (20)
k=1
where Ji(a) is an N X N matrix defined according to

(21)

(@) =~ [M—“—)] |

da,0am,

Consistent with the Poisson photocount model, the Fisher information for each channel is
evaluated as:

[J(a Z ahgf,: Bhgc[:a] hk[;; a]’ (22)
where
ahg[a ;al = —2a;Im {/’LUkp(y) /P¢11(U)Tk(u) exp (jzan(bn(u)) (Y, u)gi(y; a)dudy} ,
(23)




with

gk (y§ a’) = /PTk(u) exp (3 Z an¢n(u)> Sk(y’ u)du (24)

Because both hi[p; a] and its derivative scale linearly with ay, the Fisher information also
scales linearly with this parameter.

The Cramer-Rao lower bound makes use of the Fisher information to formulate the
following bound on the error covariance for any unbiased estimator of the unknown parameter
vector a:

E[@-a)@-a)7] > J()™, (25)

where the inequality implies that the difference between the left-hand matrix and the right-
hand matrix is non-negative definite. As a consequence of the Cramer-Rao bound,

E {Z (@n — an)?

n

> trace {[J(a)]_l} , (26)

so that the Fisher information can be used to place a lower bound the expected value of the
residual aberration strength.

Example

In this section, we present an example in which performance bounds are computed for the
estimation of wavefront-error parameters from a conventional image and from a Hartmann
sensor. For this study, the Hartmann array contained approximately 8 subapertures across
the system pupil as shown in Figure 1. Lower bounds on the estimation error for the
estimation of the first 30 coeficients in the Zernike expansion of the wavefront were then
computed for a conventional imaging system and a Hartmann sensor systeri. Because the
Zernike coefficient vector a is a random parameter for turbulence-induced aberrations, the
lower bound on the residual aberration is also random. Accordingly, we compute the bound
for many realizations of the turbulence parameters for various ratios of aperture diameter D
to seeing parameter 79, where 7y quantifies the turbulence strength [1]. The resulting bounds
are averaged over 200 realizations and plotted in Figure 2. The bound values are normalized
by the expected number of detected photons, so that the bound for a particular situation
can be obtained by dividing our bound by the expected number of photons. Whereas this
bound is computed for the estimation of only the first 30 coefficients, emperical analysis has
shown the bound to be independent of the number of coefficients that are actually present
in the wavefront aberrations. That is, the estimation for the first 30 coefficients when 40
coefficients are actually present results in the same bound on performance. In addition,
maximum-likelihood estimation of the parameters produces error variances very close to
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telescope apertu re\

Figure 1: Lenslet array used to characterize the performance of a Hartmann array for phase-

error estimation. The telescope aperture is seen to contain roughly 8 lenslet apertures across
its diameter.

N i i ‘ i
30— ; ‘ ; :
' i bound for conventional image

photon normalized mean-square error

: i ‘ i
0[ ! i ! i
5 10 15 20 25 30

Drr, (relative turbulence strength)

Figure 2: Cramer-Rao lower bounds on the estimation of the first 30 Zernike coefficients
for turbulence-induced wavefront aperrations. The bounds are normalized by the expected
number of detected photons.
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these bounds.

Impact on the Air Force

The methods and results presented in this section have a direct impact on the design of future
sensing systems for Air Force space surveillance. Collaborations on and dissemenation of this
work has been facilitated through Bruce Stribling at the Air Force Maui Optical Station in
Maui.

Dual-Channel Signal Recovery from Auto- and Cross-Correlation
Data

In this section we consider the inverse problem of recovering two non-negative signals from
measurements of their auto- and cross-correlation functions. Problems that are closely re-
lated to this include phase retrieval, wherein an object function must be recovered from
a measurement of only its autocorrelation; and blind deconvolution, wherein two object
functions must be recovered from a measurement of their convolution (or cross-correlation).
Whereas these problems have, in general, been cosidered separately, common themes are
seen in the many solutions that have been proposed. In almost all cases, for instance, the
solutions are iterative and require the utilization of auxilliary information about the range
or domain of the object function.

The general problem we address can arise in a variety of applications ranging from as-
tronomical and space-object imaging to synthetic aperture radar (SAR) surveillance. We
propose and discuss an iterative solution wherein a sequence of object estimates is produced
having the desirable properties that each estimate in the sequence is non-negative, and that a
measure of discrepancy (I-divergence) between the measured correlations and the estimated
correlations decreases monotonically with the number of iterations.

Specifically, if the unknown signals are denoted as 0;(-) and o0(-), then the auto- and
cross-correlation functions for these signals are denoted by:

7'11 Z 01 01 T — ) (27)

7"22 ZOQ 02 T — ) (28)
and

T12(y Z 01(x)os(z — y), (29)

where 7y, is the autocorrelation for oy, r99 is the autocorrelation for oo, r15 is the crosscorre-
lation for o; and oq, and we have restricted our attention to signals defined on discrete space
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(or time).

The Signal Recovery Algorithm

We first state an iterative algorithm for the recovery of 0, and o, from the noisy measurements

of 11, 722, T12:

0 d Yy
Z [ old y) + Olld(I +y ] Old + Zoold 7 —y) ollfi((y))
new — old Y 30
01 ( ) 01 ( ) 201 _+_ 02 ) ( )
and
d
Z [ old + Ogld(x oy ] OId + Zoold :r + y Olli((y))
onew(l‘) — OOId(:L') y T2 \Y (31)
2 2 20, + 01 ’ ‘
where O; and O, satisfy
ZZdu(y) + Zdlz(y) :
y ¥
= 2
O 20, + O, ’ (32)
and
2> do(y) + > dia(y)
oy y
0p = 205 + O, ’ (33)

and the noisy measurments are of 71y, 792, and 712, are dy;, dog, and d,, respectively. As we
will soon show, this algorithm has the desireable properties that o}®" and 03*¥ are always
nonnegative functions (provided that the initial estimates are nonnegative), and that

prev S Dold, (34)

where D™®" and D¢ are the I-divergence discrepancy between the data and estimates (new
or old) defined as:

Y MY ()
+ S {dnt)in 22 () - )]
n ;{du() ) dm(y)]}, (35)
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where
new Z Onew new _ y) . (36)

To show that the I-divergence is non-increasing, we first note that the measure D is
equivalent to the negative log-likelihood function for situations in which the data {d;;(y)}
are independent Poisson variants, with the expected values {r;;(y)}. Therefore, maximizing
the log-likelihood for Poisson data is equivalent to minimizing D. Next, we show that the
iterative algorithm is an instance of the expectation-maximization (EM) method, and as such

the sequence of estimates has the property of non-decreasing likelihood — or non-increasing
D [6].

EM Method for Poisson Data

Suppose the noisy data are Poisson deviates whose means are the actual auto- and cross-
correlations. In this case, the log-likelihood is [7]:

L = Z {di1(y) Inria(y) = ru(y)}
+ Z {doa(y) InTo2(y) — T22(¥)}
+ z {dr2(y) InT12(y) = r12(9)} - (37)

Therefore, maximizing L over o; and o5 is equivalent to minimizing D. To use the EN

method for this process, we begin by defining the complete data as:

ds(@,) ~ Ploi(@)o; (@ — 1)}, (38)

where the notation is meant to imply that Jij(x, y) is a Poisson random variable with mean

0;(z)oj(z — y). The many-to-one mapping from the complete data to the measured or in-
complete data is:

y) = di(z, ). (39)

The log-likelihood for these complete data is then:

La = ), {&11(x, y) Info1(z)o1(z — y)] — o1(z)o1(z — y)}

+ Y {dn(z,9) In[0s(z)ox(z — y)] - 02(x)0s(z — 1) }
+ Z {dlg(x, y) Info1(z)os(z — y)] — 01(z)o2(x — y)} ) (40)
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Following the EM method, we form the conditional Expectation of Lqg:

La = Y {du(z,y)nfoi(@)oi(z - v)] - o1(2)or(z - v)}

T,y

+ Y {dn(z,9) In[ox(®)ox(z — y)] - 0a(@)ox(x — v)}
+ 3 {dia(z,9) In[or(x)or(x — )] = o1(z)ox(z — v)} - (41)

where Jij(x,y) is the expectation of the complete data conditional on the measured (or
incomplete) data, and assuming that the actual parameter values are the current estimates

old old)

(09 and o Next, for the Maximization step we select 07°" and 03°" to maximize Lea.

From the Kuhn-Tucker conditions, we find the following conditions for a maximizer:

> [du(z,y) + dulz +y,v)] + ) Zimu, )
i (z) = = , (42)

2 Z Onew + Z Onew

and

Z [6—222(113,3/) =+ 522(-’11‘{'2,/ y ] + ZZZIQ 1: +y7y)
05" (z) = = - (43)

2 Z onew + Z Onew

These expressions are simplified by noting that:

d5(z,v) = o (a)o(z — y) o) (44)

so that

d
> [O(l)m( —y) + oz +y ] old + Z 01d (z —v) c)lIQd((Z))
Yy 12

Oxllew (.’L‘) = O(I)Id (x) 9 Z Onew + Z Onew ! (45)
and
d )
X[ — ) + oo + )] ST+ z o+ 1) 258
05 () = 03 (z) -+ ey )

9 Z Onew + Z Onew
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Now. note that if we sum these expressions over z, we obtain the follwing equations:

2 Z du(y) + Z di2(y)
= Y y 47
O 207 + O, ’ ( 2
and
2 Z dn(y) + Z di2(y)
Oy = —¢ ! : 48
? 20, + O; 18)
where O; = Y, 0" (z) is independent of the iteration number. That is, the sum of the

object estimates does not change after the first iteration, and this sum is determined by
these equations. Therefore, these equations can be solved and the sums used for the resulting
iterative equations:

o o o di2(y)

5 ot(e =)+ oo+ 0] D+ oc - 220
new __ old Y y
01" (z) = 0} “(x) 201+02 : ) (49)

and
d

Z [ old _*_O(Z)Id(z_*_y] Old Zoold (z + ) (fl;(él/)) |
new _ old Yy
02 (.’L‘) - 02 (I) 202 + 01 . (50)

Because the EM method provides a sequence of estimates that has the property of non-
decreasing likelihood, it follows that the resulting algorithm also has the property of non-
increasing I-divergence. Nonnegativity of the estimates follows naturally provides the initial
object estimates are nonnegative.

Example

Shown in Figure 3 are two object function and their auto- and cross-correlation functions.
The object estimates obtained by using the iterative method described in this report with
random starting guesses are shown in Figure 4 for 1000 iterations.

Impact on the Air Force

The methods and results presented in this section have a direct impact on the processing
of data recorded by sensing systems for Air Force space surveillance. Collaborations on
and dissemenation of this work has been facilitated through David Voelz at the Air Force
Research Laboratory in Albuquerque, NM.
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object 1 (0,) object 2 (0,)

Figure 3: Two object functions, and their auto- and cross-correlation functions.

object 1 estimate object 2 estimate

Figure 4: Object estimates after 1000 iterations with random starting guesses.
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